If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4.5x-14=0
a = 1; b = 4.5; c = -14;
Δ = b2-4ac
Δ = 4.52-4·1·(-14)
Δ = 76.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4.5)-\sqrt{76.25}}{2*1}=\frac{-4.5-\sqrt{76.25}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4.5)+\sqrt{76.25}}{2*1}=\frac{-4.5+\sqrt{76.25}}{2} $
| (-3)(8-f)=18 | | 11=–n+1 | | x+12+2x+6=90 | | 3b/5+3=5 | | 3(-6x+6)=162 | | 2-66-180=x | | 2x+–x+3=–2x+15 | | f-695=4 | | 2-90-180=x | | p-10=28 | | 80=8n+4= | | 23-x+5=9x-2 | | 2n+8+3/5=33 | | s-61=24 | | -17=-0.3k | | 12x–10–2x=19x–19 | | f−695=4 | | m+9/6=4 | | 80=8n+4 | | 7(x-4)=53 | | x=(3x-4)107 | | 5+10h=25 | | | | | | | | 8(s-88)=48 | | 50+60h=350 | | -5=3+2a | | 1+4m=25 | | 6(d-79)=84 | | 6x2-8=142 | | 5606=8i+6 |